
Why keep making
the same (mistakes)?

Laura Neto / 28-09-2023



➜ .NET Developer @ DEPT Agency 💼
➜ Over 4 years of experience

➜ Core Collaborators Community Team 󰠁
➜ Umbraco MVP ⭐

So, who 
am I?

Laura Neto



01
The background 🦖



Once upon a time, 
there was a “little” 
agency… ✍



They had been doing 
Umbraco websites for 
a while… ✨



But they were spending 
way too much time… 
just to get started! ⌛

➔ Setting up a new .NET project

➔ Installing Umbraco

➔ Adding default document types (Home page, Content 
Page, …)

➔ Adding default components (Header, Footer, 
Image, Text)

➔ Adding SEO fields to pages

Building Sitemap.xml

➔ Building Robots.txt

➔ Adding basic structured data

➔ Configuring settings

➔ Set up caching

➔ Error handling

➔ AND much more…



And even when they were finished 
with the website… 😩



Everyone did things differently. 
When there are issues and the main developer 
is not available… Ups? 💥

Projects copied features from 
other projects.
(Also, bugs copied from other projects? 
Who is actually affected? Ups? 💥)

What about SEO? 
Ups, forgot? 💥



Someone (maybe, I wasn’t actually there)

But why are we always re-doing 
everything everytime? 🥱



So DEPT’s Umbraco standard 
project was born… 🐣



It wasn’t perfect… But overtime it kept 
growing and evolving. 🪴

Is there anything perfect, though? 🤔



02
What is the Umbraco standard? 🛠



What is the 
Umbraco 
standard? 🛠

➔ Starter kit

➔ Development booster

➔ Includes all of the boilerplate and basic functionality

➔ Let’s stop reinventing the wheel!! 💪



Basic types

Components

Error handling

SEO features

Multilingual support

Search

What does 
it include? 🐣

Caching

Local setup

Helpful helpers 

Infrastructure

CI/CD

Code consistency



Basic types 📝 ✓ Basic document and data types

◆ Page types and compositions

◆ Blocks

◆ Settings



Components 📦 ✓ Built-in components based on our 
front-end setup and shelf

✓ View Components everywhere! 



Error handling 🤕 ✓ Custom 404 and 500 pages

✓ API exception handling



SEO features 📈 ✓ Sitemap

✓ Robots.txt

✓ Basic SEO composition



Multilingual 
support 🌍

✓ Hreflang tags

✓ Language switcher



Search 🔎 ✓ Basic search implementation

◆ Examine

◆ Elastic Search



Caching 
🦾

✓ Response caching

✓ Cache tag helper

✓ Cache headers (CDN)



Local setup 💻 ✓ Local database (file)

✓ uSync Content Edition 🙌



Helpful helpers ⚒ ✓ Helper extensions

✓ Tag helpers

✓ Services



Infrastructure 🦾 ✓ Best practices for running Umbraco in 
Azure web apps and load balanced 
environments

✓ Terraform Umbraco “standard”



CI/CD 🤖 ✓ Azure DevOps build pipeline file

✓ SonarCloud for code analysis



Code 
consistency✨

✓ .editorconfig

✓ Analyzers



03
What are the benefits? 🌟



Quality 👌
What are the 
benefits?🌟

Consistency ⚖

Faster onboarding 🚀

Focus on what really matters 💭

Feedback loop 🔄

Proven solutions 🏆 



04
What are the challenges?󰝮



Time

Updates

Feedback loop

Internal work is hard to sell…

No update path…

“I forgot” or “I didn’t have time”.

Lack of documentation

It has been a little forgotten (or under 
prioritized)...

Unused code



05
What are some cool features we built?



Using source 
generators…🤖
Source Generators is a C# compiler feature, released in 
.NET 5, that allows developers to generate new source 
files while the project is compiling.

For our standard we developed multiple source 
generators to help us in many ways. You will see some 
examples in the next slides.



Typed translation keys 🌍
Automatically generates code based on the translation uSync export files.

(Built using Source Generators)



Typed asset paths 📁
Automatically generates constants containing the paths of files, 
maintaining the file structure, which can be configured through an 
attribute.

(Built using Source Generators)



Crops generation
Generate the uSync files for Media Picker 3 data 
types based on configuration files, which are set 
according to the different front-end screen 
breakpoints.

(Built using Source Generators)



Image color placeholder
On upload, the dominant color of an image is calculated and 
stored in a property.

When rendering an image on a page, we first place a static svg 
with the dominant color of the image, until it is replaced with the 
actual image (once it loads).

Fun fact: I had to use network throttling in order for the 

effect to show properly in the gif 😅 



Tag helpers
We built several tag helpers in order to minimize the need to have logic in the templates.



Custom build targets
We developed a couple of custom build targets (checks) to ensure that certain settings are 
filled or updated when starting from the standard. If not, that will cause the build to fail.



06
Who is using it?



Mauritshuis.nl

➜ Museum

➜ Best Gold Partner Solution 2022🏆
➜ Umbraco 8

➜ 10 different languages



Mojo.nl

➜ Organizer of many concerts and festivals

➜ Umbraco 10

➜ Syncs events and artists from multiple 
sources into content nodes



Timing.nl

➜ Umbraco 11

➜ Custom headless solution
(there was no Content Delivery API 
yet🥲)

➜ Although acting just as an API for 
the NextJS website, a lot of features 
were still used



07
How can it still improve?



Documentation
● Not a focus until now…
● Will improve efficiency and decrease “people” 

bottlenecks

Use the latest 
Umbraco features
● Block Grid?
● Content Delivery API?

Dotnet template(s)
● Include and exclude features based on 

requirements

Keep building features
● No more re-inventing the wheel!

Look into community 
packages

● A lot of fear up until now…
● Look into it with a more open mindset.



And that’s 
mainly it… 
🙌

twitter.com/lauraneto_

linkedin.com/in/laura-neto

github.com/lauraneto

lauraneto.com

@lauraneto@umbracocommunity.social

If you have any feedback/questions or just want 
to connect you can find me at:

https://twitter.com/lauraneto_
https://www.linkedin.com/in/laura-neto/
https://github.com/lauraneto
https://lauraneto.com/
https://umbracocommunity.social/@lauraneto



